Fine-Tuning
Published on: 04 October 2025
Tags: #fine-tuning #ai
High-Level Overview: Training from Scratch vs. Fine-Tuning
graph TD
subgraph "Fine-Tuning Process"
direction TB
E(Large Pre-Trained Model) --> F[Load Pre-Trained Weights];
G[Smaller, Task-Specific Dataset];
F & G --> H{Training Step: Update Weights};
H --> I[Fine-Tuned Model];
end
subgraph "Training from Scratch"
direction TB
A[Large, General Dataset] --> B(Initialize Model with Random Weights);
B --> C{Train all layers};
C --> D[Trained Model for Specific Task];
end
%% Styling
style E fill:#f8d7da,stroke:#721c24,stroke-width:2px
style G fill:#d4edda,stroke:#155724,stroke-width:2px
style A fill:#cde4ff,stroke:#004085,stroke-width:2px
The Fine-Tuning Workflow
graph TD
A[Start] --> B(1.Select a Suitable Pre-Trained Model);
B --> C(2.Prepare a High-Quality, Task-Specific Dataset);
C --> D["3.Adapt Model Architecture
(e.g., Replace the Final Layer)"];
D --> F(4.Choose a Fine-Tuning Strategy);
F --> G[Full Fine-Tuning];
F --> H[Layer Freezing];
F --> I["Parameter-Efficient Fine-Tuning (PEFT)"];
G --> J(5.Train & Optimize the Model);
H --> J;
I --> J;
J --> K(6.Evaluate Performance on a Test Set);
K --> L{Results Satisfactory?};
L -- No --> F;
L -- Yes --> M[End: Deployed Fine-Tuned Model];
%% Styling
style A fill:#d4edda,stroke:#155724,stroke-width:2px
style M fill:#d4edda,stroke:#155724,stroke-width:2px
Layer Freezing vs. Full Fine-Tuning
graph TB
%% Define styles for all layer types
classDef base fill:#d6d8ff,stroke:#6f42c1,color:#000
classDef trainable fill:#f8d7da,stroke:#721c24,color:#000
classDef frozen fill:#e2e3e5,stroke:#383d41,color:#000
subgraph "Legend"
L1(Trainable);
L2(Frozen);
L3(Pre-Trained);
end
subgraph "3.Path B: Layer Freezing (Early Layers Frozen)"
direction TB
C1(Layer 1) --> C2(Layer 2) --> C3(...) --> Cn(New Final Layer)
end
subgraph "2.Path A: Full Fine-Tuning (All Layers Trainable)"
direction TB
B1(Layer 1) --> B2(Layer 2) --> B3(...) --> Bn(New Final Layer)
end
subgraph "1.Start: Pre-Trained Model"
direction TB
A1(Layer 1) --> A2(Layer 2) --> A3(...) --> An(Final Layer)
end
class A1,A2,A3,An base
class B1,B2,B3,Bn trainable
class C1,C2 frozen
class C3,Cn trainable
%% Invisible links to enforce order and branching
A1 ~~~ B1
A1 ~~~ C1
class L1 trainable;
class L2 frozen;
class L3 base;
Parameter-Efficient Fine-Tuning (PEFT)
graph TB
%% Define styles for clarity
classDef frozen fill:#e2e3e5,stroke:#383d41
classDef trainable_full fill:#f8d7da,stroke:#721c24
classDef trainable_peft fill:#d4edda,stroke:#155724
classDef base fill:#d6d8ff,stroke:#6f42c1
subgraph "1.Start with Pre-Trained Model"
A["Large Model
(e.g., 10B Parameters)"]
end
class A base
A -- "Method A:
Full Fine-Tuning" --> B["Large Model
(All 10B parameters
are updated)"]
A -- "Method B:
Parameter-Efficient FT" --> C["Large Model (Frozen)
(Original 10B parameters
are NOT updated)"]
C -- "+Injects" --> D["Small Adapter
(e.g., ~1M new
parameters are updated)"]
%% Apply styles
class B trainable_full
class C frozen
class D trainable_peft
subgraph "Legend"
L1(Base/Frozen);
L2(Trainable - Full);
L3(Trainable - PEFT);
end
class L1 frozen; class L2 trainable_full; class L3 trainable_peft