Context Engineering
Published on: 07 October 2025
Prompt Engineering vs. Context Engineering
graph TD
subgraph "Context Engineering"
direction TB
E[User Input] --> F[Orchestrator];
F --> G[Retrieve Knowledge];
F --> H[Access Memory];
F --> I[Select Tools];
G --> J[Dynamic Context];
H --> J;
I --> J;
J --> K{LLM};
K --> L[Output];
L --> F;
end
subgraph "Prompt Engineering"
direction TB
A[User Input] --> B[Crafted Prompt];
B --> C{LLM};
C --> D[Output];
end
Core Components of the LLM's Context
mindmap
root((LLM Context))
::icon(fa fa-brain)
System Instructions
(Persona, Role, Constraints)
User Input
(Current Query)
Memory Systems
Short-Term Memory
Long-Term Memory
Retrieved Knowledge
(RAG, APIs, Databases)
Tool Schemas
(Function Descriptions)
Structured Outputs
(JSON, XML, etc.)
Retrieval-Augmented Generation (RAG) Flow
graph TB
A[User Query] --> B{Retrieval};
C[External Knowledge Base] --> B;
B --> D[Relevant Documents];
D --> E{Augmentation};
E --> F[Generated Response];
Advanced Context Engineering Workflow
graph TD
A[User Input] --> B{Orchestrator};
B --> C{Need external knowledge?};
C -- Yes --> D[RAG: Retrieve & Augment];
C -- No --> E[Process Input];
D --> E;
E --> F{Need a tool?};
F -- Yes --> G[Select & Execute Tool];
G --> H[Get Tool Output];
H --> I;
F -- No --> I[Manage Context Window];
I --> J[Access Memory];
J --> K[Construct Final Prompt];
K --> L(LLM Call);
L --> M[Parse Output];
M --> N[Update Memory];
N --> O[Final Response];