Synthetic Data Generation
Published on: 06 November 2025
Tags: #synthetic-data #ai
Generative Adversarial Network (GAN)
graph TD
subgraph GAN Architecture
direction TB
Z[Latent Noise] --> G[Generator];
G --> X_fake[Generated Data];
X_real[Real Data] --> D{Discriminator};
X_fake --> D;
end
subgraph "Step 1: Train Discriminator"
direction TB
D -- "Prediction on Real Data" --> L_D_real(Real Loss);
D -- "Prediction on Fake Data" --> L_D_fake(Fake Loss);
L_D_real --> L_D{Total Discriminator Loss};
L_D_fake --> L_D;
L_D -- "Backpropagate" --> D;
end
subgraph "Step 2: Train Generator"
direction TB
D -- "Prediction on Fake Data" --> L_G{Generator Loss};
L_G -- "Backpropagate (through Discriminator)" --> G;
end
style G fill:#f9f,stroke:#333,stroke-width:2px
style D fill:#ccf,stroke:#333,stroke-width:2px
Variational Autoencoder (VAE)
graph TD
subgraph "VAE Forward Pass & Architecture"
direction TB
A[Input Data] --> B[Encoder];
B --> C["Mean (μ)"];
B --> D["Log-Variance (σ²)"];
subgraph Reparameterization Trick
E["ε ~ N(0, I)"] --> F{"z = μ + ε * exp(0.5 * σ²)"};
C --> F;
D --> F;
end
F --> G[Decoder];
G --> H[Reconstructed Data];
end
subgraph "VAE Loss Calculation (ELBO)"
direction TB
subgraph Reconstruction Loss
A --> I{Compare};
H --> I;
end
subgraph KL Divergence
C --> J{Regularization};
D --> J;
end
I -- "Reconstruction Loss" --> K[Total Loss];
J -- "KL Divergence" --> K;
K -- "Backpropagate" --> B;
K -- "Backpropagate" --> G;
end
style B fill:#f9f,stroke:#333,stroke-width:2px
style G fill:#ccf,stroke:#333,stroke-width:2px